a2 United States Patent

US009183331B1

(10) Patent No.: US 9,183,331 B1

Zhang et al. (45) Date of Patent: Nov. 10, 2015
(54) FORMALIZING IP DRIVER INTERFACE USPC ooiivevieviecneercicenenen 716/106, 111, 136
See application file for complete search history.
(71) Applicant: Cadence Design Systems, Inc., San
Jose, CA (US) (56) References Cited
(72) Inventors: David Guoqing Zhang, Fremont, CA U.S. PATENT DOCUMENTS
(US); Erik S. Panu, Los Gatos, CA
(US); Levent Caglar, Dublin, CA (US) 6,077,304 A 6/2000 Kasuya
7,571,414 B2* 8/2009 Huangetal. 716/138
(73) Assignee: Cadence Design Systems, Inc., San 7,904,878 B2 3/2011 Kolathur et al.
Jose, CA (US) 8,346,981 B2 1/2013 Scaffidi, Jr.
’ 2007/0174638 Al* 7/2007 Fanetal. ... 713/193
)) o) 2008/0098339 Al 4/2008 Chan
(*) Notice: Subject to any disclaimer, the term of this i]
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by O days.
Primary Examiner — Vuthe Siek
(21) Appl. No.: 14/231,136 (74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP
(22) Filed: Mar. 31,2014 (57) ABSTRACT
(51) Imt.ClL A system and method that tests an IP component of a hard-
GOG6F 17/50 (2006.01) ware design generates an abstract model of the IP component
(52) US.CL based on knowledge of the design and one or more protocols
CPC e GO6F 17/5022 (2013.01) implemented with the IP component. A generic driver and
(58) Field of Classification Search associated interfaces are additionally generated or selected to
CPC ... GOG6F 17/5036; GO6F 17/5022; GOGF test the IP component within the hardware design.
17/5081; GOGF 17/5045; GO6F 17/5068;
GO6F 17/505 18 Claims, 5 Drawing Sheets
e N
Create Design
610
. S
Define Objects
615
Test Bench Customer Verification Codes I
150 145 Generate Verification

Driver Software

Stack Integration Interface

135 140
Driver Interface Verification HAL Interface
130 interface 120
125
viP DiP
s 110
Protocotl Interface
105
100

Interface
620

r

Select Generic Driver
625

-~

vy

~

Model Design with ViP
Definition

630
. — /

—

- Test with VIP
835

Ve

Design IP
Available?
840

NO

YES | Replace VIP with DIP
645

p
Test with DIP
650

US 9,183,331 B1

Sheet 1 of 5

Nov. 10, 2015

U.S. Patent

001

l "Old

Gor
aoeLIdju} [090304d
01t St
did diA
— Gel —
0Z1 eoBLOlU] 0cT
aoeLIBIU] TVH uonesyLIaA aoeLI9)U] JOALIQ]
—_ Gel
ori HOB)S

aoepa)u} uoneibajuy 21EMYOS JOALIQ

Svi 051
SOPO7) UOHEIYLIDA JBWOISND youoag)sa}

U.S. Patent Nov. 10, 2015 Sheet 2 of 5 US 9,183,331 B1

Device
iP1 P2
210 220
IC IP4
205 240
iP5 {P6
250 260

FIG. 2
200

U.S. Patent

Nov. 10, 2015

Client
310

Verification

Platform
311

Storage Device
320

Client
410

User
Interface
411

FIG. 4

400

Sheet 3 of 5 US 9,183,331 B1
f,r
Objects
325
300
Server
440
Verification
Network Platform
430 aa1

Storage

Device
420

U.S. Patent Nov. 10, 2015 Sheet 4 of 5 US 9,183,331 B1

PROCESSOR
502
BUS
C m D
MEMORY
BRIDGE
SYSTEM
m M
507
/O
DEVICE(S)
506
FIG. 5

510

U.S. Patent Nov. 10, 2015 Sheet 5 of 5 US 9,183,331 B1

Create Design
610

Y

(Define Objects

615

Generate Verlflcatlon h

Interface
620
W,
-~ ™
Select Generic Driver
625
\. J

v

(Model Design with VIP

Definition
- T y
4 2
> Test with VIP
835
_ +)
- r \
D IP
| NO_ Av":{,gﬁ.e? YES | Replace VIP with DIP
' 645
640 L ‘)
(" N
Test with DIP
650
\ y,

FIG. 6

US 9,183,331 Bl

1
FORMALIZING IP DRIVER INTERFACE

BACKGROUND

Aspects ofthe present invention relate generally to the field
of'integrated circuit design, and in particular to techniques for
verification and debug of such designs.

Hardware designers, for example integrated circuit (IC)
designers, do not always design every component of a new
hardware device. While designers may design one or more
components of a particular device, they often employ com-
ponent designs (also known as intellectual property, or design
1P) from one or more third-party providers. Using compo-
nents from third-party providers can facilitate the design by
avoiding the need for the designer to design every aspect of
the device’s functionality. The design IP implemented in a
device typically provide operations consistent with a standard
protocol or with a proprietary protocol of the design IP pro-
vider.

Multiple aspects of a design typically may be tested. For
example, a hardware design may undergo architectural simu-
lation and analysis and debugging where the functionality of
each component being implemented in the design is tested,
for example, with transaction level modeling (TLM) or bus
functional modeling. The hardware design may additionally
undergo circuit simulation and analysis where the signals
between components are tested, for example using register
transition level (RTL) analysis. Other steps may include:
design simulation, for example to model the components of a
design together; design and software emulation, for example
to model execution of software elements executing on a mod-
eled design; FPGA prototyping; hardware and software co-
verification; and post-silicon validation.

Each ofthese testing stages typically utilizes different veri-
fication platforms and/or different interface and driver tools,
therefore limiting the reuse of verification methods, and tools
relevant to verification. For example, hardware designers may
employ a hardware based verification platform to perform
certain tests on a completed design. Hardware verification
platforms typically enable testing of the various components
of'the design which facilitates design analysis and debugging
operations to identify and fix defects that are encountered.
Such testing may require the creation of device specific driv-
ers to verify that the inputs and outputs over a communication
medium conform to a standard or predefined protocol. These
drivers, sometimes referred to as firmware, are software
stacks created to manage the design IP.

However, driver development is error-prone and time con-
suming. Conventionally, the drivers and tools necessary to
test the design IP of a device are not implemented until after
the design IP has been completed and further may require
rewrites whenever a design IP is changed. Where the design
IP is only a partial implementation of the protocol, the driver
for the design IP will be incomplete. In such cases, the reuse
of the driver for the next revision of the design IP becomes
difficult. Because the driver is often developed based on the
completion of the design IP, the testing process is signifi-
cantly delayed because it is not parallelized with the design IP
development. Additionally, the driver interface between an
operating system and a device under test are often provided to
the designer by the design IP developer in the context of a
specific operating system information that is often propri-
etary, incomplete or ambiguous. As a result, the operating
system and the driver may not function correctly together.
Additionally, it is difficult to test the developed driver under
all operating conditions of the design. For example, it is not
possible to create all the relevant conditions during driver

20

25

30

40

45

50

2

validation and many device protocol related conditions are
not handled in the driver. Currently, testing of design IP is
executed with a limited software stack. For example, the
bare-metal driver sequences are developed to provide only
limited testing from a software perspective. Once the particu-
lar test is complete, these sequences are typically discarded.

Accordingly, the art requires a system to efficiently test
design IP, the design that contain the design IP, and the related
drivers before the design under test is available.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of various embodiments of
the present invention will be apparent through examination of
the following detailed description in conjunction with the
accompanying drawing figures in which similar reference
numbers are used to indicate functionally similar elements.

FIG. 1 illustrates an exemplary verification platform
according to an embodiment of the present invention.

FIG. 2 is a simple block diagram illustrating an exemplary
hardware design that may be tested with the verification plat-
form according to an embodiment of the present invention.

FIG. 3 is asimple block diagram illustrating components of
an exemplary system according to an embodiment of the
present invention.

FIG. 41s asimple block diagram illustrating components of
an exemplary system according to an embodiment of the
present invention.

FIG. 51s asimple block diagram illustrating components of
an exemplary client according to an embodiment of the
present invention.

FIG. 6 illustrates an exemplary method for testing a hard-
ware design according to an embodiment of the present inven-
tion.

DETAILED DESCRIPTION

A system and method that tests a design IP component of a
hardware design generates an abstract model of the design IP
component based on knowledge of the design and one or
more protocols implemented with the design IP component.
A generic driver and associated interfaces are additionally
generated or selected to test the design IP component within
the hardware design. Generic drivers may be generated or
provided for every potential protocol used in the hardware
design, for every potential required interface, and for every
operating system that may be used with the hardware design.

The model of the design IP component and the generic
driver may be used to test the hardware and software func-
tionality of the hardware design before the design IP compo-
nent is available. When the design IP component hardware is
available for incorporation with the designed hardware,
switching the testing procedures from the design IP compo-
nent model to the design IP component itself may be seam-
less, or may require only minimal driver and interface adjust-
ments. Custom testcases and verification codes may be reused
to test the protocols implemented within the hardware design
and may be provided by the hardware designer, the applica-
tion level designer, or the design IP component developer.

By defining and normalizing a driver interface for a design
IP before the design IP implementation is complete, the test-
ing process can be expedited, including parallelizing the
development of the design verification environment and test
sequences. Verification content generated during the creation
of'the design, including any potential object-oriented models,
may be used to create the model of the design IP component
and the generic driver. Verification concepts referenced in this

US 9,183,331 Bl

3

application are described in more detail in U.S. patent appli-
cation Ser. No. 13/929,277 filed on Jun. 27, 2013 and in U S.
patent application Ser. No. 13/964,846 filedon Aug. 12,2013;
these applications are incorporated by reference in this appli-
cation in their entirety.

FIG. 1 illustrates an exemplary verification platform 100
according to an embodiment of the present invention. Verifi-
cation platform 100 tests that a design for a hardware com-
ponent or system on a chip (SOC) design conforms to the
standards for one or more protocols implemented within the
design. As shown in FIG. 1, the design under test contains at
least one IP component, herein referred to as design IP (DIP)
that may be a third party IP component.

As used herein the term design may refer to a system on a
chip (SOC), a subsystem, or a system as created by a circuit
designer. The term design under test refers to the design or
portion of the design undergoing evaluation. The term design
1P refers to a portion of the design provided by a third party.

FIG. 2 is a simple block diagram illustrating an exemplary
hardware design 200 that may be tested with the verification
platform 100 according to an embodiment of the present
invention. The hardware design 200 may be a design for any
hardware component or device, for example a mobile phone
(including but not limited to a smartphone), a tablet, or a
computer of some kind. The device includes one or more ICs
205 with design IP components IP1-IP6 210-260. For
example a smartphone could include multiple design IP com-
ponents such as memory (static or dynamic, general-purpose
or special-purpose); graphics processing; audio; video;
power management; various wired communication and/or
bus protocols including but not limited to PCI Express, mem-
bers of the PCI Express family, and/or variants thereof, in
different applications depending on the data communications
need; wireless communications protocols including but not
limited to cellular (e.g. GSM/CDMA), Bluetooth™, Wi-Fi
(some form of 802.11), WIMAX (some form of 802.16);
various connection protocols including but not limited to
different forms of USB (different versions, micro-USB, mini-
USB, and the like), video connection protocols (e.g. Thun-
derbolt (which might be one example of a PCI Express appli-
cation), HDMI, or others) or other connector types which
may or may not be proprietary; and/or image processing (e.g.
on-board camera functionality). All of these various elements
could be provided in a single design (for example, in a system
on a chip, or other design incorporating design IP from mul-
tiple providers, or multiple types of design IP from a single
provider), or could be contained in multiple designs.

While some of the design IP components mentioned above
may be proprietary, a number of them may be developed
according to a standard, be it wired or wireless communica-
tions, audio, video, memory, or others. Different design IP
providers can and will have different ways of implementing a
particular standard. It should be noted that there may be
portions of a standard for which compliance is mandatory,
and other portions for which compliance is optional. The
hardware designer may have a particular feature set in mind,
in which compliance either with only mandatory portions of
the standard, or with mandatory and certain optional portions
of the standard, would be necessary.

Where a standard such as Bluetooth™, Wi-Fi, other com-
munications, memory management, display, or other func-
tionality in a device is implicated, verification of the design
may include showing compliance with the standard. Where
the functionality in question is the result of proprietary third
party design IP which does not necessarily follow a particular
standard, the design IP provider may disclose an interface
definition or custom protocol, without the design IP provider

10

15

20

25

30

35

40

45

50

55

60

65

4

revealing its proprietary information. The standards or pro-
vided definitions may then be utilized by the verification
platform 100 to show that the components of the design
execute properly or to otherwise identify errors.

In the case of design IP that is designed to provide particu-
lar functionality, but in accordance with a proprietary design
or feature set rather than a standard, outputs of the design will
be a proprietary function of the inputs. A design IP provider
may be able to provide a custom protocol consisting of
design-based sets of inputs and corresponding outputs, mak-
ing it possible to exercise the design through a selection of
various combinations of inputs without revealing proprietary
aspects of the IP design component.

Returning to FIG. 1, a physical layer of a standard protocol
interface 105, for example a PCle Pipe connection, may be
connected to either a design IP hardware 110 or a verification
IP (VIP) model 115 that emulates the design IP hardware 110.
When used with the design IP hardware 110, the verification
platform 100 may connect the design IP 110 to an integration
interface 140 via a hardware abstraction layer (HAL) inter-
face 120. The integration interface 140 may simulate an oper-
ating system and operating system drivers that will commu-
nicate with the design IP hardware 110 via a standard
protocol. Then, a testbench or other verification codes 145
may be implemented to run the design IP 110 through various
testcases and scenarios. Conventionally, the integration inter-
face 140 and HAL interface 120 are unique for each design IP
110 to be tested.

According to an exemplary embodiment, a verification IP
model 115 may be provided that uses the verification and
protocol knowledge developed and utilized during earlier
design and verification phases of the device to execute a
verification IP model that simulates an abstract version of the
design IP 110. The VIP 115 may be connected to the integra-
tion interface 140 via a verification interface 125. As previ-
ously noted, the integration interface 140 may simulate an
operating system and operating system drivers and therefore
may be testcase or customer specific. However, according to
an embodiment of the invention, the verification interface 125
will be standardized for the protocol being tested.

The verification and protocol knowledge of the VIP model
115 may include an object-oriented definition of one or more
standards or other protocols implemented by the design.
Objects for a protocol standard may be defined and utilized
during any stage of the design verification process. For
example, the object-oriented definition of the standard may
beused during architectural development to confirm the com-
ponent interconnections represented by associations between
objects conform to the standard. Similarly, the object oriented
definition of the standard may be used during component
simulation, system emulation, debugging, or post-silicon
analysis to confirm that the components of the design con-
form to the standard during execution. Additionally, the
object oriented definition of the standard may be used to
develop a verification driver and abstract VIP model of the
design IP to test the design before the design IP is itself ready
to undergo testing. Then the prior verification of the VIP
model may be used to facilitate verification of the design IP.

As shown in FIG. 1, the VIP model 115 may additionally be
connected to a driver interface 130 and an associated driver
software stack 135. The driver interface 130 and associated
driver stack 135 create a generic software driver for the pro-
tocol implemented with the protocol interface 105. The
generic VIP driver sets out constraints for the design under
test to ensure conformance to a protocol. A generic driver
interface 130 may be developed for every protocol covered by
the VIP of the design and for every testcase. A VIP driver may

US 9,183,331 Bl

5

also be generated for each potential operating system in
which the design IP 110 may operate, for example, for a
Linux™, Windows™, iOS™, or Android™ operating sys-
tem. According to an embodiment, for each particular
instance of the VIP being tested, a VIP driver will be auto-
matically generated. This allows for a highly configurable
driver as any generated driver will be based on a unique
combination of the design IP specification class for the imple-
mented protocol, the specification version, and the operating
system.

The driver interface 130 may include abstractions for data
management, interrupt management, performance monitor-
ing, status monitoring, error handling, service requests, con-
figuration, power management, etc. The driver software stack
135 interfaces between an application simulated by the test-
bench 150 and the driver interface 130. According to an
embodiment, the driver interface 130 may be exposed to the
driver software stack 135 as DIP wrappers.

The customer verification codes 145 may include verifica-
tion sequences and testcases that will execute on top of the
driver software stack 135 and driver interface 130 to test the
generic driver and the VIP model 115. The test bench 150 may
be implemented to instantiate the software driver and the VIP
model 115 and connects the driver to the test sequences 145.
The customer verification codes and test sequences 145 may
include a set of debug and verification testcases that are
provided by the design IP developer or the designer to verify
the design IP under test.

The driver interface 130 may use standardized interface
commands to work with the verification IP model 115 such
that various design IP 110 designs that conform to the stan-
dardized interface may be tested with the same interface.
Utilizing the normalized, generated driver, the integration
interface 140 can map the design IP specific driver to the
generated driver interface 130. This simplifies the integration
of the design IP into the design under test as the driver inter-
face 130 will be consistent with the VIP model 115. The
execution and test of the VIP driver should run seamlessly
when the VIP model 115 is replaced by the design IP 110.

A designer may initially use the verification IP model 115
with the generated driver and a comprehensive test-suite.
Once the design IP is available, the verification IP is replaced
with the design IP hardware. For design IP components that
have implemented an interface compatible with the verifica-
tion interface 125, the hardware driver and test-suite should
run with the design IP in the same manner as the test-suite was
executed with the verification IP. Otherwise, the designer may
map the verification IP driver stack to their design IP in order
to get the proper execution results. Then, using the same
driver, the designer can validate the design, including the
design IP. Once the test-suite executes successfully, verifica-
tion of the design IP is effectively complete.

By automatically generating a driver for the design IP, the
designer benefits by receiving high quality and robust device
drivers and driver stacks for each protocol and interface. The
VIP centric driver stack and test-suite also ensure compre-
hensive and quick verification of the corresponding design IP
which results in faster time to market.

Because the VIP information works with a variety of
design IPs provided by a multitude of different IP developers,
the generated VIP driver will be highly configurable for
designs that undergo verification with the verification plat-
form 100 and the verification platform 100 will model proto-
col details accurately before the design IP hardware is made
available for testing.

The software development team may use the same gener-
ated VIP driver during software verification and test. This

10

15

20

25

30

35

40

45

50

55

60

65

6

allows for earlier test and verification of software with the
design IP and provides that whatever is done in either hard-
ware or software conforms to the standards of the protocols
being implemented. Reuse of the verification driver across
verification services will aid in ensuring that the design IP
works as expected and reduce the development time by avoid-
ing creation of a relevant driver at each verification stage.
Additionally, because the VIP driver will be available in
advance of the design IP hardware, software developers can
test various software and operating systems on exemplary
hardware design models, for example, to test the inputs and
outputs for communication via a known protocol, before the
design IP hardware is available.

The verification platform may allow for backward compat-
ible testing such that a designer can test older versions of the
design IP, or otherwise turn off new features of the design IP
and related driver(s).

A user may access a verification platform in a standalone
client system, client-server environment, or a networked
environment. FIG. 3 is a simple block diagram illustrating
components of an exemplary system 300 according to an
embodiment of the present invention. As shown in FIG. 3, a
system 300 may comprise a client 310 executing a verifica-
tion platform 311 and having a memory storage 320. The
client 310 may be any computing system that executes a
verification platform 311 or otherwise facilitates access to
memory storage 320, for example a personal computer. The
client 310 may include a processor that performs a method in
accordance with the disclosed embodiments. Such a client
would be part of an overall verification system in accordance
with the disclosed embodiments.

Hardware designs, instruction sets, software packages,
instances of modeled components, interface definitions, and
other objects 325 used by the verification platform 311 may
be stored in memory storage 320. A user may access the
objects 325 stored in memory storage 320 with the client 310
via the verification platform 311, where the verification plat-
form 311 is capable of accessing memory storage 320 and
displaying the objects 325 and the data associated with the
verification. The verification platform 311 may include a user
interface, for example a program, application or middleware
that acts as a frontend to and facilitates access to objects in
memory storage 320. The verification platform 311 may
facilitate verification of the components in a hardware design
using the display and edit tools and procedures described
herein. The user may interact with the verification platform
311 through a number of input devices, such as by inputting a
selection as with a mouse or inputting a request as with a
keyboard. The user may observe the verification results on an
output device or display. The verification platform 311 may
run in an application window controlled by the user.

Memory storage may include a file system, hard drive,
database, or any other method of storing data. According to an
embodiment, multiple memory storage devices may be
implemented (not shown). For example, design storage may
contain the hardware design and related information and a
separate verification database may contain interface defini-
tions and other objects used to run verification tests on a
hardware design.

As shown in FIG. 3, a client 310 may be a stand-alone
system, as may be of particular interest where the design
being verified is confidential. Additionally, according to an
aspect of an embodiment as shown in FIG. 4, a client 410 may
be part of a networked environment.

FIG. 41s asimple block diagram illustrating components of
an exemplary system 400 according to an embodiment of the
present invention. As shown in FIG. 4, system 400 may

US 9,183,331 Bl

7

include a client 410 having a user interface 411. The client
410 may be connected to a server 440 via a network 430. The
verification platform 441, which in this embodiment is
located at server 440, may have access to storage device 420
storing hardware designs, instruction sets, software pack-
ages, instances of modeled components, interface definitions,
and other objects utilized by the verification platform 441.
The server 440 may include a processor that performs a
method in accordance with the disclosed embodiments. Such
a server then would be part of an overall verification system in
accordance with the disclosed embodiments.

A user may access a verification platform 441 at the server
440 via the client 410 having a user interface 411 capable of
accessing and displaying the components implemented as
part of a hardware design and the results of the verification of
those components. The client 410 may be any computing
system that facilitates the user accessing storage device 420,
for example a personal computer. The network 430 may be a
wired or wireless network that may include a local area net-
work (LAN), a wireless network, the Internet, or any other
network available for accessing storage device 420 from the
client 410.

The server 440 may be a network server accessible to the
client 410 via the network 430 that may manage access to
storage device 420. The user interface 411 may receive
instructions regarding verification of a design from the user
and utilizing the objects stored in memory storage 420, facili-
tate a display of the verification or the information gathered
during the verification. Multiple different clients (not shown)
may access storage device 420 via the network 430 and
request access to the objects stored therein.

In another networked environment, the verification plat-
form may be executed on a network capable client and access
the designs, packages and other objects stored in one or more
storage devices via a network and communications server.

FIG. 51s a simple block diagram illustrating components of
an exemplary client 510 according to an embodiment of the
present invention. As shown in FIG. 5, the client 510 config-
ured to execute the verification platform as described herein
may include a processor 502, a memory system 520 and one
or more input/output (I/O) devices 506 in communication.
The communication can be implemented in a variety of ways
and may include one or more computer buses 507, 508 and/or
bridge devices 509 as shown in FIG. 5. According to an aspect
of an embodiment, the I/O devices 506 can include network
adapters and/or mass storage devices from which the client
510 can receive commands for executing the phases of veri-
fication.

As shown in FIG. 3, a client 510 may be a stand-alone
system, as may be of particular interest where the components
being simulated are confidential. Additionally, according to
an aspect of an embodiment as shown in FIG. 4, a client 510
may be part of a networked environment.

FIG. 6 illustrates an exemplary method for utilizing a veri-
fication driver to test a hardware design according to an
embodiment of the present invention. In FIG. 6, a hardware
device is designed (block 610). During the design process, or
after the design has been completed, components of the
design are expressed as objects according to an object-ori-
ented definition of one or more specified standards imple-
mented by the design (block 615). Using the object-oriented
definition of the design, a verification interface may be gen-
erated (block 620). Then a driver is selected based on the
operating system or application executed on the system
implementing the design and the protocols being utilized by
the design (block 625). In some embodiments, an appropriate
driver interface and driver stack may be generated as required.

10

20

25

30

35

40

45

50

55

60

65

8

Once the verification interface is derived and a generic
driver selected, the design may be modeled with the object-
oriented definition of the design (block 630). The system may
then be tested with the model using a set of testcases and
verification codes (block 635). Once the design IP is available
(block 640), the model may be replaced by the design IP and
a new interface to the design IP created or an existing inter-
face adjusted (block 645). Then the same testcases and veri-
fication codes may be executed for the design IP (block 650).

Almost invariably, a verification process fails to run prop-
erly the first time, as there are errors. In the context of a
standard to be implemented, the expected outputs from the
design being modeled or tested will be known from the stan-
dard. If there are bugs, then the outputs of the verification will
not be the expected outputs. These discrepancies may be
identified by a review of the data recorded during the tests or
other known debug process.

In the case of design IP that is designed to provide particu-
lar functionality, but in accordance with a proprietary design
or feature set rather than a standard, outputs of the design will
be a proprietary function of the inputs. A design IP provider
may be able to provide a custom protocol consisting of
design-based sets of inputs and corresponding outputs, mak-
ing it possible to exercise the design through a selection of
various combinations of inputs without revealing proprietary
aspects of the design IP design component. An object-ori-
ented definition of the design IP component may then be
created based on the custom protocol.

In accordance with one aspect of the invention, an EDA
manufacturer may receive custom protocols and make them
part of appropriate EDA software, be it verification IP, a test
bench, or some other EDA software. In some instances, the
EDA manufacturer may be able to generate and/or implement
the custom protocol on its own. For example, the custom
protocol may be derived or abstracted from a public data sheet
for the design IP. In general, in accordance with an aspect of
the invention, custom protocols for third party IP can be
generated without revealing the design IP provider’s propri-
etary information. Because the EDA software user will not
have direct access to the custom protocols provided in the
design IP, the user is not privy to the design IP provider’s
proprietary information.

In some applications, the modules described hereinabove
may be provided as elements of an integrated software sys-
tem, in which the blocks may be provided as separate ele-
ments of a computer program. Some embodiments may be
implemented, for example, using a non-transitory computer-
readable storage medium or article which may store an
instruction or a set of instructions that, if executed by a pro-
cessor, may cause the processor to perform amethod in accor-
dance with the embodiments. Other applications of the
present invention may be embodied as a hybrid system of
dedicated hardware and software components. Moreover, not
all of the modules described herein need be provided or need
be provided as separate units. Additionally, it is noted that the
arrangement of the blocks in FIG. 6 does not necessarily
imply a particular order or sequence of events, nor are they
intended to exclude other possibilities. For example, the
operations depicted at blocks 610, 615, 620, and 630 may
occur in an alternate order or substantially simultaneously
with each other. Such implementation details are immaterial
to the operation of the present invention unless otherwise
noted above.

The exemplary methods and computer program instruc-
tions may be embodied on a non-transitory computer read-
able storage medium that may include any medium that can
store information. Examples of a computer readable storage

US 9,183,331 Bl

9

medium include electronic circuits, semiconductor memory
devices, ROM, flash memory, erasable ROM (EROM), floppy
diskette, CD-ROM, optical disk, hard disk, fiber optic
medium, or any electromagnetic or optical storage device. In
addition, a server or database server may include computer
readable media configured to store executable program
instructions. The features of the embodiments of the present
invention may be implemented in hardware, software, firm-
ware, or a combination thereof and utilized in systems, sub-
systems, components or subcomponents thereof.

While the invention has been described in detail above with
reference to some embodiments, variations within the scope
and spirit of the invention will be apparent to those of ordinary
skill in the art. Thus, the invention should be considered as
limited only by the scope of the appended claims.

We claim:
1. A computer-implemented method of testing a hardware
design, the method comprising:
creating, with a processor, a model of a third party IP
component that is part of the design, the model incorpo-
rating verification knowledge developed during design
and verification phases of the hardware design;
generating a driver for an interface of the model, the driver
generated to be compatible with a specific instance of
the model and to operate the interface according to a
protocol defined in the verification knowledge; and
testing the hardware design including the IP component
with the generated driver and the model, the testing
comprising providing inputs and modeling correspond-
ing outputs and comparing the modeled outputs to
expected outputs for the model, such that said testing
facilitates manufacture of an integrated circuit incorpo-
rating the hardware design.
2. The method of claim 1, further comprising:
replacing the model with a hardware implementation of the
design.
3. The method of claim 2, further comprising:
testing the hardware implementation with the generated
driver, the testing comprising providing inputs and gen-
erating corresponding outputs and comparing the gen-
erated outputs to expected outputs for the hardware.
4. The method of claim 1, wherein the inputs and expected
outputs are consistent with the protocol.
5. The method of claim 1, wherein the inputs and expected
outputs are provided by a third party.
6. The method of claim 5, wherein the inputs and expected
outputs are proprietary.
7. The method of claim 1, further comprising:
testing a software application designed to operate on the
hardware design with the generated driver.
8. The method of claim 1, further comprising:
generating a driver for every protocol implemented in the
IP component.
9. The method of claim 1, further comprising:
generating a driver for every testcase to be tested with the
IP component.
10. The method of claim 9, wherein the testcases include a
testcase for each of a plurality of different operating systems.
11. A non-transitory computer readable medium storing
instructions that when executed by a processor perform a
method of testing a hardware design, the method comprising:

5

10

15

20

25

35

40

45

55

10

creating, with a processor, a model of a third party IP
component that is part of the design, the model incorpo-
rating verification knowledge developed during design
and verification phases of the hardware design;

generating a driver for an interface of the model, the driver
generated to be compatible with a specific instance of
the model and to operate the interface according to a
protocol defined in the verification knowledge; and

testing the hardware design including the IP component by
testing a protocol implemented in the IP component with
the generated driver and the model, the testing compris-
ing providing inputs and modeling corresponding out-
puts and comparing the modeled outputs to expected
outputs for the model, such that said testing facilitates
manufacture of an integrated circuit incorporating the
hardware design.

12. The computer readable medium of claim 11, further
comprising:

replacing the model with the IP component hardware.

13. The computer readable medium of claim 12, further
comprising:

testing an implementation of the hardware design with the

generated driver, the testing comprising providing
inputs and generating corresponding outputs and com-
paring the generated outputs to expected outputs for the
hardware.

14. The computer readable medium of claim 11, further
comprising:

testing a software application designed to operate on the

hardware design with the generated driver.

15. A system comprising:

a memory to store an integrated circuit design; and

a processor configured to test the design by:

creating a model of a third party IP component that is
part of the design, the model incorporating verifica-
tion knowledge developed during design and verifi-
cation phases of the hardware design, generating a
driver for an interface of the model, the driver gener-
ated to be compatible with a specific instance of the
model and to operate the interface according to a
protocol defined in the verification knowledge, and
testing the hardware design including the IP compo-
nent by testing a protocol implemented in the IP com-
ponent with the generated driver and the model, the
testing comprising providing inputs and modeling
corresponding outputs and comparing the modeled
outputs to expected outputs for the model, such that
said testing facilitates manufacture of an integrated
circuit incorporating the hardware design.

16. The system of claim 15, wherein the processor is fur-
ther configured to replace the model with the IP component
hardware.

17. The system of claim 15, wherein the processor is fur-
ther configured to test a hardware implementation of the
integrated circuit design with the generated driver, the testing
comprising providing inputs and generating corresponding
outputs and comparing the generated outputs to expected
outputs for the hardware.

18. The system of claim 15, wherein the processor is fur-
ther configured to test a software application designed to
operate on the hardware design with the generated driver.

#* #* #* #* #*

